Objective: The aim of this in vitro study was to investigate the effect of the titanium dioxide formed by anodization process on the titanium–resin cement microshear bond strength.
Methods: Forty titanium cylinders (9 × 11 mm) were randomly divided into 4 groups according to the surface treatment methods: Control group, no treatment; airborne-particle abrasion group, 120 µm Al2O3; primer group, 120 µm Al2O3 +metal primer; and titanium dioxide group, titanium dioxide nanotube (n-TiO2) formed by anodization process. Scanning electron microscope analysis was performed to determine the surface alterations of the specimens. Then, dual-polymerizing resin cement was applied on the specimens by using Tygon tubes, and microshear bond strength tests were performed by using a universal testing machine. The obtained data were analyzed by using 1-way analysis of variance and the Tukey post hoc test (α=0.05).
Results: Each surface treatment application increased the titanium–resin cement bond strength (P < .05). The highest bond strength value was obtained by titanium dioxide nanotube application, and the difference between groups was statistically significant (control group: 4.91 ± 1.10; airborne-particle abrasion group: 5.66 ± 1.90; primer group: 6.700 ± 2.05; and titanium dioxide group: 9.44 ± 1.20) (P < .05). All groups showed an adhesive failure mode.
Conclusion: The formation of titanium dioxide nanotube on titanium by anodization process increased the microshear bond strength significantly higher than that of the airborne-particle abrasion group or the metal primer group.
Cite this article as: Akar T, Coşkun M.E. Investigation of the effectiveness of TiO2 nanotube coating on titanium–resin cement bond strength. Arch Basic Clin Res., 2023;5(3):397-403.